Introduction: To improve carotid artery stenting (CAS), more information about the functioning of the stent is needed. Therefore, a method that can image the flow near and around a stent is required. The aim of this study was to evaluate the performance of high-frame-rate contrast-enhanced ultrasound (HFR CEUS) in the presence of a stent. Methodology: HFR CEUS acquisitions of a carotid artery phantom, a silicone tube with diameter 8 mm, with and without a stent were acquired at transmit voltages of 2V, 4V and 10V using a Verasonics ultrasound system and C5-2 probe. Different concentrations of ultrasound contrast agent (UCA) were tested in a blood mimicking fluid (BMF). Particle image velocimetry (PIV) analysis was performed on Singular Value Decomposition (SVD) filtered images. Mean and peak velocities, and correlation coefficients were compared between stented and non-stented regions. Also, experimental results were compared with theoretical and numerical models. Results: The averaged experimental mean velocity (0.113 m/s) was significant lower than the theoretical and numerical mean velocity (0.129 m/s). The averaged experimental peak velocity (0.152 m/s) was significant lower than the theoretical and numerical peak velocity (0.259 m/s). Correlation coefficients and averaged mean velocity values were lower (difference of 0.022 m/s) in stented regions compared to non-stented regions. Conclusion: In vitro experiments showed an underestimation of mean and peak velocities in stented regions compared to non-stented regions. However, the microbubbles can be tracked efficiently and the expected laminar flow profile can be quantified using HFR CEUS near and around a stent.

, , , ,,
Medical Imaging 2018: Ultrasonic Imaging and Tomography
Erasmus MC: University Medical Center Rotterdam

Hoving, A.M. (Astrid M.), Voorneveld, J., De Vries, E.E. (Evelien E.), Groot Jebbink, E. (Erik), Versluis, M., Bosch, H., … Slump, C. (2018). In vitro high-frame-rate contrast-enhanced ultrasound particle image velocimetry in a carotid artery stent. In Progress in Biomedical Optics and Imaging - Proceedings of SPIE. doi:10.1117/12.2293669