In epidemiologic analytical studies, the primary goal is to obtain a valid and precise estimate of the effect of the exposure of interest on a given outcome in the population under study. A crucial source of violation of the internal validity of a study involves bias arising from confounding, which is always a challenge in observational research, including life course epidemiology. The increasingly popular approach of meta-analyzing individual participant data from several observational studies also brings up to discussion the problem of confounding when combining data from different populations. In this study, we review and discuss the most common sources of confounding in life course epidemiology: (i) confounding by indication, (ii) impact of baseline selection on confounding, (iii) time-varying confounding and (iv) mediator-outcome confounding. We also discuss the issue of addressing confounding in the context of an individual participant data meta-analysis.

, ,
doi.org/10.1017/S2040174418000582, hdl.handle.net/1765/110082
Journal of Developmental Origins of Health and Disease
Erasmus MC: University Medical Center Rotterdam

Santos, S. (S.), Zugna, D., Pizzi, C., & Richiardi, L. (2018). Sources of confounding in life course epidemiology. Journal of Developmental Origins of Health and Disease. doi:10.1017/S2040174418000582