Introduction: According to studies, statins possess analgesics and anti-inflammatory properties. In the present study, we examined the antinociceptive, anti-inflammatory and antioxidative effects of rosuvastatin in an experimental model of Chronic Constriction Injury (CCI). Methods: Our study was conducted on four groups; sham, CCI (the control group), CCI+rosuvastatin (i.p. 5 mg/kg), and CCI+rosuvastatin (i.p. 10 mg/kg). We performed heat hyperalgesia, cold and mechanical allodynia tests on the 3rd, 7th, 14th, and 21st after inducing CCI. Blood samples were collected to measure the serum levels of Tumor Necrosis Factor (TNF)-α, and Interleukin (IL)-6. Rats' spinal cords were also examined to measure tissue concentration of Malondialdehyde (MDA), Superoxide Dismutase (SOD), and Glutathione Peroxidase (GPx) enzymes. Results: Our findings showed that CCI resulted in significant increase in heat hyperalgesia, cold and mechanical allodynia on the 7th, 14th and 21st day. Rosuvastatin use attenuated the CCI-induced hyperalgesia and allodynia. Rosuvastatin use also resulted in reduction of TNF-α, IL-6, and MDA levels. However, rosuvastatin therapy increased the concentration of SOD and GPx in the CCI+Ros (5 mg/kg) and the CCI+Ros (10 mg/kg) groups compared to the CCI group. Conclusion: Rosuvastatin attenuated the CCI-induced neuropathic pain and inflammation. Thus, antinociceptive effects of rosuvastatin might be channeled through inhibition of inflammatory biomarkers and antioxidant properties.

Chronic Constriction Injury (CCI), Neuralgia, Rats, Rosuvastatin,
Basic and Clinical Neuroscience
Department of Epidemiology

Hasanvand, A. (Amin), Ahmadizar, F, Abbaszadeh, A. (Abolfazl), Amini-Khoei, H. (Hossein), Goudarzi, M. (Mehdi), Abbasnezhad, A. (Amir), & Choghakhori, R. (Razieh). (2018). The antinociceptive effects of rosuvastatin in chronic constriction injury model of male rats. Basic and Clinical Neuroscience (Vol. 9, pp. 251–260). doi:10.32598%2Fbcn.9.4.251