Microfabricated nanofluidic electrochemical devices offer a highly controlled nanochannel geometry; they confine the volume of chemical reactions to the nanoscale and enable greatly amplified electrochemical detection. Here, the generation of stable light emission by electrochemiluminescence (ECL) in transparent nanofluidic devices is demonstrated for the first time by exploiting nanogap amplification. Through continuous oxidation and reduction of [Ru(bpy)3]2+ luminophores at electrodes positioned at opposite walls of a 100 nm nanochannel, we compare classic redox cycling and ECL annihilation. Enhanced ECL light emission of attomole luminophore quantities is evidenced under ambient conditions due to the spatial confinement in a 10 femtoliter volume, resulting in a short diffusion timescale and highly efficient ECL reaction pathways at the nanoscale.

Additional Metadata
Persistent URL dx.doi.org/10.1039/c8sc03209b, hdl.handle.net/1765/113358
Journal Chemical Science
Citation
Al-Kutubi, H. (Hanan), Voci, S. (Silvia), Rassaei, L, Sojic, N. (Neso), & Mathwig, K. (Klaus). (2018). Enhanced annihilation electrochemiluminescence by nanofluidic confinement. Chemical Science, 9(48), 8946–8950. doi:10.1039/c8sc03209b