For the quantification of myocardial function, myocardial stiffness can potentially be measured non-invasively using shear wave elastography. Clinical diagnosis requires high precision. In 10 healthy volunteers, we studied the reproducibility of the measurement of propagation speeds of shear waves induced by aortic and mitral valve closure (AVC, MVC). Inter-scan was slightly higher but in similar ranges as intra-scan variability (AVC: 0.67 m/s (interquartile range [IQR]: 0.40–0.86 m/s) versus 0.38 m/s (IQR: 0.26–0.68 m/s), MVC: 0.61 m/s (IQR: 0.26–0.94 m/s) versus 0.26 m/s (IQR: 0.15–0.46 m/s)). For AVC, the propagation speeds obtained on different day were not statistically different (p = 0.13). We observed different propagation speeds between 2 systems (AVC: 3.23–4.25 m/s [Zonare ZS3] versus 1.82–4.76 m/s [Philips iE33]), p = 0.04). No statistical difference was observed between observers (AVC: p = 0.35). Our results suggest that measurement inaccuracies dominate the variabilities measured among healthy volunteers. Therefore, measurement precision can be improved by averaging over multiple heartbeats.

Additional Metadata
Keywords Elastography, High frame rate, Natural shear wave elastography, Shear waves, stiffness, Tissue elasticity imaging, Valve closure
Persistent URL dx.doi.org/10.1016/j.ultrasmedbio.2019.09.002, hdl.handle.net/1765/119925
Journal Ultrasound in Medicine & Biology
Citation
Keijzer, L, Strachinaru, M, Bowen, D.J. (Dan J.), Geleijnse, M.L, van der Steen, A.F.W, Bosch, J.G, … Vos, H.J. (2019). Reproducibility of Natural Shear Wave Elastography Measurements. Ultrasound in Medicine & Biology. doi:10.1016/j.ultrasmedbio.2019.09.002