Pregnancy is associated with physiological changes that may impact drug pharmacokinetics (PK). The goals of this study were to build maternal-fetal physiologically based pharmacokinetic (PBPK) models for acyclovir and emtricitabine, 2 anti(retro)viral drugs with active renal net secretion, and to (1) evaluate the predicted maternal PK at different stages of pregnancy; (2) predict the changes in PK target parameters following the current dosing regimen of these drugs throughout pregnancy; (3) evaluate the predicted concentrations of these drugs in the umbilical vein at delivery; (4) compare the model performance for predicting maternal PK of emtricitabine in the third trimester with that of previously published PBPK models; and (5) compare different previously published approaches for estimating the placental permeability of these 2 drugs. Results showed that the pregnancy PBPK model for acyclovir predicted all maternal concentrations within a 2-fold error range, whereas the model for emtricitabine predicted 79% of the maternal concentrations values within that range. Extrapolation of these models to earlier stages of pregnancy indicated that the change in the median PK target parameters remained well above the target threshold. Concentrations of acyclovir and emtricitabine in the umbilical vein were overall adequately predicted. The comparison of different emtricitabine PBPK models suggested an overall similar predictive performance in the third trimester, but the comparison of different approaches for estimating placental drug permeability revealed large differences. These models can enhance the understanding of the PK behavior of renally excreted drugs, which may ultimately inform pharmacotherapeutic decision making in pregnant women and their fetuses.

, , , ,
doi.org/10.1002/jcph.1515, hdl.handle.net/1765/121227
Journal of Clinical Pharmacology
Department of Pediatrics

Liu, X., Momper, J.D., Rakhmanina, N., van den Anker, J., Green, D.J., Burckart, G.J., … Dallmann, A. (2019). Physiologically Based Pharmacokinetic Models to Predict Maternal Pharmacokinetics and Fetal Exposure to Emtricitabine and Acyclovir. Journal of Clinical Pharmacology. doi:10.1002/jcph.1515