Objectives: Aortic valve disease is the most frequent indication for heart valve replacement with the highest prevalence in elderly. Tissue-engineered heart valves (TEHV) are foreseen to have important advantages over currently used bioprosthetic heart valve substitutes, most importantly reducing valve degeneration with subsequent reduction of re-intervention. We performed early Health Technology Assessment of hypothetical TEHV in elderly patients (≥ 70 years) requiring surgical (SAVR) or transcatheter aortic valve implantation (TAVI) to assess the potential of TEHV and to inform future development decisions.
Methods: Using a patient-level simulation model, the potential cost-effectiveness of TEHV compared with bioprostheses was predicted from a societal perspective. Anticipated, but currently hypothetical improvements in performance of TEHV, divided in durability, thrombogenicity, and infection resistance, were explored in scenario analyses to estimate quality-adjusted life-year (QALY) gain, cost reduction, headroom, and budget impact.
Results: Durability of TEHV had the highest impact on QALY gain and costs, followed by infection resistance. Improved TEHV performance (− 50% prosthetic valve-related events) resulted in lifetime QALY gains of 0.131 and 0.043, lifetime cost reductions of €639 and €368, translating to headrooms of €3255 and €2498 per hypothetical TEHV compared to SAVR and TAVI, respectively. National savings in the first decade after implementation varied between €2.8 and €11.2 million (SAVR) and €3.2–€12.8 million (TAVI) for TEHV substitution rates of 25–100%.
Conclusions: Despite the relatively short life expectancy of elderly patients undergoing SAVR/TAVI, hypothetical TEHV are predicted to be cost-effective compared to bioprostheses, commercially viable and result in national cost savings when biomedical engineers succeed in realising improved durability and/or infection resistance of TEHV.

Early health technology assessment, Heart valve implantation, Patient-level simulation model, Tissue-engineered heart valves
Government Policy; Regulation; Public Health (jel I18), Health: Other (jel I19)
dx.doi.org/10.1007/s10198-020-01159-y, hdl.handle.net/1765/124207
The European Journal of Health Economics
Department of Cardio-Thoracic Surgery

Huygens, S.A, Corro Ramos, I, Bouten, C.V.C, Kluin, J, Chiu, S.T, Grunkemeier, G.L, … Rutten-van Mölken, M.P.M.H. (2020). Early cost-utility analysis of tissue-engineered heart valves compared to bioprostheses in the aortic position in elderly patients. The European Journal of Health Economics. doi:10.1007/s10198-020-01159-y