This study aimed to predict long-term progression-free survival (PFS) using early M-protein dynamic measurements in patients with relapsed/refractory multiple myeloma (MM). The PFS was modeled based on dynamic M-protein data from two phase III studies, POLLUX and CASTOR, which included 569 and 498 patients with relapsed/refractory MM, respectively. Both studies compared active controls (lenalidomide and dexamethasone, and bortezomib and dexamethasone, respectively) alone vs. in combination with daratumumab. Three M-protein dynamic features from the longitudinal M-protein data were evaluated up to different time cutoffs (1, 2, 3, and 6 months). The abilities of early M-protein dynamic measurements to predict the PFS were evaluated using Cox proportional hazards survival models. Both univariate and multivariable analyses suggest that maximum reduction of M-protein (i.e., depth of response) was the most predictive of PFS. Despite the statistical significance, the baseline covariates provided very limited predictive value regarding the treatment effect of daratumumab. However, M-protein dynamic features obtained within the first 2 months reasonably predicted PFS and the associated treatment effect of daratumumab. Specifically, the areas under the time-varying receiver operating characteristic curves for the model with the first 2 months of M-protein dynamic data were ~ 0.8 and 0.85 for POLLUX and CASTOR, respectively. Early M-protein data within the first 2 months can provide a prospective and reasonable prediction of future long-term clinical benefit for patients with MM.

Additional Metadata
Persistent URL dx.doi.org/10.1111/cts.12836, hdl.handle.net/1765/129000
Journal Clinical and Translational Science
Citation
Yan, X. (Xiaoyu), Xu, X.S. (Xu Steven), Weisel, K, Mateos, M.V, Sonneveld, P, Dimopoulos, M.A, … Zhou, H. (Honghui). (2020). Early M-Protein Dynamics Predicts Progression-Free Survival in Patients With Relapsed/Refractory Multiple Myeloma. Clinical and Translational Science. doi:10.1111/cts.12836