2020-01-20
Correcting the January Optimism Effect
Publication
Publication
Journal of Forecasting , Volume 39 p. 927- 933
Each month, various professional forecasters give forecasts for next year's real gross domestic product (GDP) growth and unemployment. January is a special month, when the forecast horizon moves to the following calendar year. Instead of deleting the January data when analyzing forecast updates, I propose a periodic version of a test regression for weak-form efficiency. An application of this periodic model for many forecasts across a range of countries shows that in January GDP forecast updates are positive, whereas the forecast updates for unemployment are negative. I document that this January optimism about the new calendar year is detrimental to forecast accuracy. To empirically analyze Okun's law, I also propose a periodic test regression, and its application provides more support for this law.
Additional Metadata | |
---|---|
, , , , | |
hdl.handle.net/1765/129435 | |
Journal of Forecasting | |
Organisation | Department of Econometrics |
Franses, Ph.H.B.F. (2020). Correcting the January Optimism Effect. Journal of Forecasting, 39, 927–933. Retrieved from http://hdl.handle.net/1765/129435
|