Studies in the field of psychology often employ (computerized) behavioral tasks, aimed at mimicking real-world situations that elicit certain actions in participants. Such tasks are for example used to study risk propensity, a trait-like tendency towards taking or avoiding risk. One of the most popular tasks for gauging risk propensity is the Balloon Analogue Risk Task (BART; Lejuez et al., 2002), which has been shown to relate well to self-reported risk-taking and to real-world risk behaviors. However, despite its popularity and qualities, the BART has several methodological shortcomings, most of which have been reported before, but none of which are widely known. In the present paper, four such problems are explained and elaborated on: a lack of clarity as to whether decisions are characterized by uncertainty or risk; censoring of observations; confounding of risk and expected value; and poor decomposability into adaptive and maladaptive risk behavior. Furthermore, for every problem, a range of possible solutions is discussed, which overall can be divided into three categories: using a different, more informative outcome index than the standard average pump score; modifying one or more task elements; or using a different task, either an alternative risk-taking task (sequential or otherwise), or a custom-made instrument. It is important to make use of these solutions, as applying the BART without accounting for its shortcomings may lead to interpretational problems, including false-positive and false-negative results. Depending on the research aims of a given study, certain shortcomings are more pressing than others, indicating the (type of) solutions most needed. By combining solutions and openly discussing shortcomings, researchers may be able to modify the BART in such a way that it can operationalize risk propensity without substantial methodological problems.

, , , , ,,
Journal of Trial and Error

de Groot, K. (2020). Burst Beliefs – Methodological Problems in the Balloon Analogue Risk Task and Implications for Its Use. Journal of Trial and Error, 1(1). doi:10.36850/mr1