<p>Background: A significant proportion of surgical inpatients is often admitted longer than necessary. Early identification of patients who do not need care that is strictly provided within hospitals would allow timely discharge of patients to a postoperative nursing home for further recovery. We aimed to develop a model to predict whether a patient needs hospital-specific interventional care beyond the second postoperative day. Methods: This study included all adult patients discharged from surgical care in the surgical oncology department from June 2017 to February 2020. The primary outcome was to predict whether a patient still needs hospital-specific interventional care beyond the second postoperative day. Hospital-specific care was defined as unplanned reoperations, radiological interventions, and intravenous antibiotics administration. Different analytical methods were compared with respect to the area under the receiver-operating characteristics curve, sensitivity, specificity, positive predictive value, and negative predictive value. Results: Each model was trained on 1,174 episodes. In total, 847 (50.5%) patients required an intervention during postoperative admission. A random forest model performed best with an area under the receiver-operating characteristics curve of 0.88 (95% confidence interval 0.83–0.93), sensitivity of 79.1% (95% confidence interval 0.67–0.92), specificity of 80.0% (0.73–0.87), positive predictive value of 57.6% (0.45–0.70) and negative predictive value of 91.7% (0.87–0.97). Conclusion: This proof-of-concept study found that a random forest model could successfully predict whether a patient could be safely discharged to a nursing home and does not need hospital care anymore. Such a model could aid hospitals in addressing capacity challenges and improve patient flow, allowing for timely surgical care.</p>

doi.org/10.1016/j.surg.2021.05.005, hdl.handle.net/1765/136327
ACS Applied Materials and Interfaces
Erasmus MC: University Medical Center Rotterdam

Vikram Gopal, Benjamin E. Nilsson-Payant, Hollie French, Y.J. (Jurre) Siegers, Wai Shing Yung, Matthew Hardwick, & Aartjan J.W. Te Velthuis. (2021). Zinc-Embedded Polyamide Fabrics Inactivate SARS-CoV-2 and Influenza A Virus. ACS Applied Materials and Interfaces, 13(26), 30317–30325. doi:10.1021/acsami.1c04412