The PTEN tumor suppressor gene is frequently inactivated in human tumors, including prostate cancer. Based on the Cre/loxP system, we generated a novel mouse prostate cancer model by targeted inactivation of the Pten gene. In this model, Cre recombinase was expressed under the control of the prostate-specific antigen (PSA) promoter. Conditional biallelic and monoallelic Pten knock-out mice were viable and Pten recombination was prostate-specific. Mouse cohorts were systematically characterized at 4 to 5, 7 to 9, and 10 to 14 months. A slightly increased proliferation rate of epithelial cells was observed in all prostate lobes of monoallelic Pten knock-out mice (PSA-Cre;Pten-loxP/+), but minimal pathologic changes were detected. All homozygous knock-out mice (PSA-Cre;Pten-loxP/loxP) showed an increased size of the luminal epithelial cells, large areas of hyperplasia, focal prostate intraepithelial neoplasia lesions and an increased prostate weight at 4 to 5 months. More extensive prostate intraepithelial neoplasia and focal microinvasion occurred at 7 to 9 months; invasive prostate carcinoma was detected in all male PSA-Cre;Pten-loxP/loxP mice at 10 to 14 months. At 15 to 16 months, a rare lymph node metastasis was found. In hyperplastic cells and in tumor cells, the expression of phospho-AKT was up-regulated. In hyperplastic and tumor cells, expression of luminal epithelial cell cytokeratins was up-regulated; tumor cells were negative for basal epithelial cell cytokeratins. Androgen receptor expression remained detectable at all stages of tumor development. The up-regulation of phospho-AKT correlated with an increased proliferation rate of the epithelial cells, but not with a reduced apoptosis.

, , , , , , , , , , , , , , , , , , ,,
Cancer Research
Erasmus MC: University Medical Center Rotterdam

Ziel-van der Made, A., Autar, B., van der Korput, H., Vermeij, M., van Duijn, P., Cleutjens, K., … Trapman, J. (2005). Targeted biallelic inactivation of Pten in the mouse prostate leads to prostate cancer accompanied by increased epithelial cell proliferation but not by reduced apoptosis. Cancer Research, 65(13), 5730–5739. doi:10.1158/0008-5472.CAN-04-4519