This paper presents a novel method for segmenting the coronary lumen in CTA data. The method is based on graph cuts, with edge-weights depending on the intensity of the centerline, and robust kernel regression. A quantitative evaluation in 28 coronary arteries from 12 patients is performed by comparing the semi-automatic segmentations to manual annotations. This evaluation showed that the method was able to segment the coronary arteries with high accuracy, compared to manually annotated segmentations, which is reflected in a Dice coefficient of 0.85 and average symmetric surface distance of 0.22 mm.

, , , , , , , , , , , , , ,
Erasmus MC: University Medical Center Rotterdam

Schaap, M.M, Neefjes, L.A.E, Metz, C.T, van der Giessen, A.G, Weustink, A.C, Mollet, N.R.A, … Niessen, W.J. (2009). Coronary lumen segmentation using graph cuts and robust kernel regression. Retrieved from