To study the block structure of a connected graph G=(V,E), we introduce two algebraic approaches that reflect this structure: a binary operation + called a leap operation and a ternary relation L called a leap system, both on a finite, nonempty set V. These algebraic structures are easily studied by considering their underlying graphs, which turn out to be block graphs. Conversely, we define the operation +G as well as the set of leaps LG of the connected graph G. The underlying graph of +G , as well as that of LG , turns out to be just the block closure of G (i.e. the graph obtained by making each block of G into a complete subgraph).