2002-02-01
What are the Advantages of MCMC Based Inference in Latent Variable Models?
Publication
Publication
Statistica Neerlandica , Volume 56 - Issue 1 p. 2- 22
Recent developments in Markov chain Monte Carlo [MCMC] methods have increased the popularity of Bayesian inference in many fields of research in economics, such as marketing research and financial econometrics. Gibbs sampling in combination with data augmentation allows inference in statistical/econometric models with many unobserved variables. The likelihood functions of these models may contain many integrals, which often makes a standard classical analysis difficult or even unfeasible. The advantage of the Bayesian approach using MCMC is that one only has to consider the likelihood function conditional on the unobserved variables. In many cases this implies that Bayesian parameter estimation is faster than classical maximum likelihood estimation. In this paper we illustrate the computational advantages of Bayesian estimation using MCMC in several popular latent variable models.
Additional Metadata | |
---|---|
, | |
doi.org/10.1111/1467-9574.00060, hdl.handle.net/1765/2039 | |
Statistica Neerlandica | |
Organisation | Erasmus Research Institute of Management |
Paap, R. (2002). What are the Advantages of MCMC Based Inference in Latent Variable Models?. Statistica Neerlandica, 56(1), 2–22. doi:10.1111/1467-9574.00060
|