Background: Myocardial deformation parameters obtained by speckle-tracking echocardiography (STE) and color Doppler tissue imaging (CDTI) using two different ultrasound systems and three different software packages were compared. Methods: Apical four-chamber, short-axis grayscale, and color Doppler tissue images were prospectively acquired using Vivid 7 and iE33 ultrasound systems in 34 children and then analyzed using EchoPAC and QLAB (STE) and SPEQLE (CDTI). Results: Measurement of myocardial deformation was feasible for all three modalities. Longitudinal strain (ε) measurements showed the lowest intraobserver and interobserver variability (intraobserver and interobserver coefficients of variation, 9% and 8% for EchoPAC, 5% and 6% for QLAB, and 14% and 16% for SPEQLE). In addition, longitudinal ε had a small bias and narrow limits of agreement when comparing different techniques. The coefficients of variation of circumferential ε by EchoPAC and QLAB were 12% and 11% (intraobserver) and 9% and 13% (interobserver), respectively. Circumferential ε by STE had a small systematic bias but relatively narrow limits of agreement. The reproducibility of radial ε measurements using STE was low, while CDTI ε provided better performance (intraobserver and interobserver coefficients of variation for radial posterior ε, 12% and 24% for EchoPAC, 39% and 56% for QLAB, and 12% and 14% for SPEQLE). Radial ε was on average 50% lower using QLAB compared with EchoPAC and SPEQLE. Systolic strain rate values obtained by STE were lower compared with CDTI-derived values. The limits of agreement for strain rate values among the three modalities were wide, and intraobserver and interobserver variability was poor for all three modalities. Conclusions: Some deformation measurements (e.g., longitudinal and circumferential ε) are comparable among different ultrasound machines and software packages, whereas others are significantly different (e.g., radial ε and strain rate). This study stresses the need for an industry standard for these techniques.

, , ,,
Journal of the American Society of Echocardiography
Erasmus MC: University Medical Center Rotterdam

Koopman, L.P, Slorach, C, Hui, W, Manlhiot, C, McCrindle, B.W, Friedberg, M.K, … Mertens, L. (2010). Comparison between Different Speckle Tracking and Color Tissue Doppler Techniques to Measure Global and Regional Myocardial Deformation in Children. Journal of the American Society of Echocardiography, 23(9), 919–928. doi:10.1016/j.echo.2010.06.014