Natural androgens, testosterone (T) and its derivative dihydrotestosterone (DHT) play a crucial role in the development and maintenance of the male phenotype. Androgens are steroids that exert their function via the androgen receptor (AR), a ligand dependent transcription factor. The human AR gene, is located on the X chromosome, and contains 8 exons, coding for a 110 kDa, 919 amino acids protein (Brinkmann et al., 1989; Hughes and Deeb, 2006). In the classical model of AR action, the unliganded AR is located in the cytoplasm in complex with chaperone proteins (Pratt and Toft, 1997; Prescott and Coetzee, 2006). Upon androgen binding the chaperone complex is modifi ed and the AR translocates to the nucleus (Georget et al., 1997; Tyagi et al., 2000; Black and Paschal, 2004). In the nucleus, the AR binds to specifi c sequences in promoters and enhancers of target genes, interacts with specifi c coregulators and enhances the recruitment of the general transcription machinery, leading to transcription initiation (Fig. 1) (Glass and Rosenfeld, 2000; Claessens et al., 2001; Cosma, 2002; Orphanides and Reinberg, 2002; Heemers and Tindall, 2007). Recently, many reviews on AR function have been published (e.g. Dehm and Tindall, 2007; Heemers and Tindall, 2007; Trapman and Dubbink, 2007; Centenera et al., 2008; Claessens et al., 2008). The focus of this thesis is on molecular mechanisms underlying AR function in living cells.

androgen receptors, interaction, living cells, proteins
J. Trapman (Jan)
Erasmus University Rotterdam
Erasmus MC Rotterdam,Dutch Cancer Society (KWF),Stichting tot Bevordering van de Electronenmicroscopie in Nederland (SEN)
Erasmus MC: University Medical Center Rotterdam

Royen, M.E. (2008, December 10). Protein-protein Interactions of the Androgen Receptor in Living Cells. Erasmus University Rotterdam. Retrieved from http://hdl.handle.net/1765/20787