SCFAs (short-chain fatty acids), fermentation products of bacteria, influence epithelial-specific gene expression. We hypothesize that SCFAs affect goblet-cell-specific mucin MUC2 expression and thereby alter epithelial protection. In the present study, our aim was to investigate the mechanisms that regulate butyrate-mediated effects on MUC2 synthesis. Human goblet cell-like LS174T cells were treated with SCFAs, after which MUC2 mRNA levels and stability, and MUC2 protein expression were analysed. SCFA-responsive regions and cis-elements within the MUC2 promoter were identified by transfection and gel-shift assays. The effects of butyrate on histone H3/H4 status at the MUC2 promoter were established by chromatin immunoprecipitation. Butyrate (at 1 mM), as well as propionate, induced an increase in MUC2 mRNA levels. MUC2 mRNA levels returned to basal levels after incubation with 5-15 mM butyrate. Interestingly, this decrease was not due to loss of RNA stability. In contrast, at concentrations of 5-15 mM propionate, MUC2 mRNA levels remained increased. Promoter-regulation studies revealed an active butyrate-responsive region at -947/-371 within the MUC2 promoter. In this region we identified an active AP1 (c-Fos/c-Jun) cis-element at -818/-808 that mediates butyrate-induced activation of the promoter. Finally, MUC2 regulation by butyrate at 10-15 mM was associated with increased acetylation of histone H3 and H4 and methylation of H3 at the MUC2 promoter. In conclusion, 1 mM butyrate and 1-15 mM propionate increase MUC2 expression. The effects of butyrate on MUC2 mRNA are mediated via AP-1 and acetylation/methylation of histones at the MUC2 promoter.

Histone acetylation, Histone methylation, Human milk feeding, MUC2, Necrotizing enterocolitis, Short-chain fatty acid,
Biochemical Journal
Erasmus MC: University Medical Center Rotterdam

Burger-van Paassen, N, Vincent, A, Puiman, P.J, van der Sluis, M, Bouma, J, Boehm, G, … Renes, I.B. (2009). The regulation of intestinal mucin MUC2 expression by short-chain fatty acids: Implications for epithelial protection. Biochemical Journal, 420(2), 211–219. doi:10.1042/BJ20082222