BACKGROUND-We hypothesized that microparticles (MPs) released after ischemia are endogenous signals leading to postischemic vasculogenesis. METHODS AND RESULTS-MPs from mice ischemic hind-limb muscle were detected by electron microscopy 48 hours after unilateral femoral artery ligation as vesicles of 0.1- to μm diameter. After isolation by sequential centrifugation, flow cytometry analyses showed that the annexin V MP concentration was 3.5-fold higher in ischemic calves than control muscles (1392±406 versus 394±180 annexin V MPs per 1 mg; P<0.001) and came mainly from endothelial cells (71% of MPs are CD). MPs isolated from ischemic muscles induced more potent in vitro bone marrow-mononuclear cell (BM-MNC) differentiation into cells with endothelial phenotype than those isolated from control muscles. MPs isolated from atherosclerotic plaques were ineffective, whereas those isolated from apoptotic or interleukin-1β-activated endothelial cells also promoted BM-MNC differentiation. Interestingly, MPs from ischemic muscles produced more reactive oxygen species and expressed significantly higher levels of NADPH oxidase p47 (6-fold; P<0.05) and p67 subunits (16-fold; P<0.001) than controls, whereas gp91 subunit expression was unchanged. BM-MNC differentiation was reduced by 2-fold with MPs isolated from gp91-deficient animals compared with wild-type mice (P<0.05). MP effects on postischemic revascularization were then examined in an ischemic hind-limb model. MPs isolated from ischemic muscles were injected into ischemic legs in parallel with venous injection of BM-MNCs. MPs increased the proangiogenic effect of BM-MNC transplantation, and this effect was blunted by gp91 deficiency. In parallel, BM-MNC proangiogenic potential also was reduced in ABCA1 knockout mice with impaired vesiculation. CONCLUSION-MPs produced during tissue ischemia stimulate progenitor cell differentiation and subsequently promote postnatal neovascularization.

Angiogenesis, Ischemia, Microparticles, Stem cells,
Circulation (Baltimore)
Erasmus MC: University Medical Center Rotterdam

Leroyer, A.S, Ebrahimian, T.G, Cochain, C, Récalde, A, Blanc-Brude, O, Mees, B.M.E, … Silvestre, J.S. (2009). Microparticles from ischemic muscle promotes postnatal vasculogenesis. Circulation (Baltimore), 119(21), 2808–2817. doi:10.1161/CIRCULATIONAHA.108.816710