The cellular retinoic acid binding protein type I (CRABP-I) shows a highly specific expression pattern during mouse embryonic development. The tissues that express CRABP-I, i.e. the central nervous system (CNS), neural crest, branchial arches, limb bud and frontonasal mass, coincide with those that are most sensitive to unphysiological retinoic acid (RA) concentrations. We have investigated the transcriptional elements that are responsible for the spatiotemporal regulation of CRABP-I expression in the mouse embryo. We show here that a 16 kb fragment harbours all the elements needed for the correct spatiotemporal expression pattern. Upon further dissection of this fragment we have found that expression in the CNS is driven by elements in the upstream region of the gene, while expression in mesenchymal and neural crest tissue is regulated via element(s) located downstream of exon II of the gene. Two distinct fragments in the upstream region are required for expression in the CNS, as neither of these fragments alone is able to drive correct expression of a reporter gene in transgenic mice. DNAseI footprinting analysis of the two upstream fragments revealed the presence of a number of protected elements. One of these regulatory elements has the hallmarks of an RA response element, suggesting that CRABP-I expression in neural tissue can be directly modulated by RA via the RARs/RXRs.