2011
Sentiment lexicon creation from lexical resources
Publication
Publication
Lecture Notes in Business Information Processing (LNBIP) , Volume 87 LNBIP p. 185- 196
Today's business information systems face the challenge of analyzing sentiment in massive data sets for supporting, e.g., reputation management. Many approaches rely on lexical resources containing words and their associated sentiment. We perform a corpus-based evaluation of several automated methods for creating such lexicons, exploiting vast lexical resources. We consider propagating the sentiment of a seed set of words through semantic relations or through PageRank-based similarities. We also consider a machine learning approach using an ensemble of classifiers. The latter approach turns out to outperform the others. However, PageRank-based propagation appears to yield a more robust sentiment classifier.
Additional Metadata | |
---|---|
, , , , | |
doi.org/10.1007/978-3-642-21863-7_16, hdl.handle.net/1765/26651 | |
Lecture Notes in Business Information Processing (LNBIP) | |
Organisation | Erasmus School of Economics |
Heerschop, B., Hogenboom, A., & Frasincar, F. (2011). Sentiment lexicon creation from lexical resources. In Lecture Notes in Business Information Processing (LNBIP) (Vol. 87 LNBIP, pp. 185–196). doi:10.1007/978-3-642-21863-7_16 |