In the cerebellum, Delphilin is expressed selectively in Purkinje cells (PCs) and is localized exclusively at parallel fiber (PF) synapses, where it interacts with glutamate receptor (GluR) δ2 that is essential for long-term depression (LTD), motor learning and cerebellar wiring, Delphilin ablation exerted little effect on the synaptic localization of GluRδ2. There were, no detectable abnormalities in cerebellar histology, PC cytology and PC synapse formation in contrast ta GluRδ2 mutant mice. However, LTD induction was facilitated at PF-PC synapses in Delphilin mutant mice. Intracellular Ca2+required for the induction of LTD appeared to be reduced in the mutant mice, while Ca2+influx through voltage-gated Ca2+, channels and metabotropic GluR1 -mediated slow synaptic response were similar between wild-type and mutant mice. We further showed that the gain-increase adaptation of the optokinetic response (OKR) was enhanced in the mutant mice. These findings are compatible with the idea that LTD induction at PF-PC synapses is a crucial rate-limiting step in OKR gain-increase adaptation, a simple form of motor learning. As exemplified in this study, enhancing synaptic plasticity at a specific synaptic site of a neural network is a useful approach to understanding the roles of multiple plasticity mechanisms at various cerebellar synapses in motor control and learning. Copyright:,
Erasmus MC: University Medical Center Rotterdam

Takeuchi, T, Ohtsuki, G, Yoshida, T, Fukaya, M, Wainai, T, Yamashita, M, … Mishina, M. (2008). Enhancement of both long-term depression induction and optokinetic response adaptation in mice lacking delphilin. PLoS ONE, 3(5). doi:10.1371/journal.pone.0002297