The mammalian startle response is controlled by glycine inhibition in the spinal cord. Evidence for additional glycine inhibition on the level of the brainstem, namely in the caudal pontine reticular nucleus (PnC), is controversial. Startle mediating PnC neurons receive fast input from sensory pathways and project to cranial and spinal motoneurons. Synaptic depression in the sensory synapses in the PnC has been indicated as underlying mechanism of short-term habituation of startle. We here performed patch-clamp recordings of PnC giant neurons in rat brain slices to test the hypothesis that the activation of glycine receptors inhibits PnC neurons and that this inhibition is involved in synaptic depression in the PnC.Glycine strongly inhibited PnC neuron activity and synaptic signalling, indicating that functional glycine receptors mediate a powerful inhibition of PnC neurons over a wide range of glycine concentrations. Strychnine reversed all glycine effects, but had no effect on PnC neurons itself. Thus, we found no evidence for a tonic glycine inhibition or for glycine activation within the primary startle pathway indicating that baseline startle reactions are unlikely to be controlled by glycine in the PnC. Most importantly, synaptic depression underlying short-term habituation was not affected by glycine or strychnine.

, , , , , , ,
doi.org/10.1016/j.neures.2011.06.007, hdl.handle.net/1765/30929
Neuroscience Research
Erasmus MC: University Medical Center Rotterdam

Geis, H.-R., & Schmid, S. (2011). Glycine inhibits startle-mediating neurons in the caudal pontine reticular formation but is not involved in synaptic depression underlying short-term habituation of startle. Neuroscience Research, 71(2), 114–123. doi:10.1016/j.neures.2011.06.007