Context: T3action in neurons is essential for brain development. Recent evidence indicates that monocarboxylate transporter 8 (MCT8) is important for neuronal T3uptake. Hemizygous mutations have been identified in the X-linked MCT8 gene in boys with severe psychomotor retardation and elevated serum T3levels. Objective: The objective of this study was to determine the functional consequences of MCT8 mutations regarding transport of T3. Design: MCT8 function was studied in wild-type or mutant MCT8-transfected JEG3 cells by analyzing: 1) T3uptake, 2) T3metabolism in cells cotransfected with human type 3 deiodinase, 3) immunoblotting, and 4) immunocytochemistry. Results: The mutations identified in MCT8 comprise four deletions (24.5 kb, 2.4 kb, 14 bp, and 3 bp), three missense mutations (Ala224Val, Arg271His, and Leu471Pro), a nonsense mutation (Arg245stop), and a splice site mutation (94 amino acid deletion). All tested mutants were inactive in uptake and metabolism assays, except MCT8 Arg271His, which showed approximately 20% activity vs. wild-type MCT8. Conclusion: These findings support the hypothesis that the severe psychomotor retardation and elevated serum T3levels in these patients are caused by inactivation of the MCT8 transporter, preventing action and metabolism of T3in central neurons. Copyright,
Journal of Clinical Endocrinology and Metabolism
Erasmus MC: University Medical Center Rotterdam

Jansen, J., Friesema, E., Kester, M., Milici, C., Reeser, M., Grüters, A., … Visser, T. (2007). Functional analysis of monocarboxylate transporter 8 mutations identified in patients with X-linked psychomotor retardation and elevated serum triiodothyronine. Journal of Clinical Endocrinology and Metabolism, 92(6), 2378–2381. doi:10.1210/jc.2006-2570