Random inactivation of one of the two female X chromosomes establishes dosage compensation between XY males and XX females in placental mammals. X inactivation is controlled by the X inactivation center (Xic). Recent advances in genome sequencing show that the Xic has evolved from an ancestral vertebrate gene cluster in placental mammals and has undergone separate rearrangements in marsupials. The Xic ensures that all but one X chromosome per diploid genome are inactivated. Which chromosome remains active is randomly chosen. Pairing of Xic loci on the two X chromosomes and alternate states of the X chromosomes before inactivation have recently been implicated in the mechanism of random choice. Chromosome-wide silencing is then initiated by the noncoding Xist RNA, which evolved with the mammalian Xic and covers the inactive X chromosome.