2012-09-13
Quorum Colorings of Graphs
Publication
Publication
Report / Econometric Institute, Erasmus University Rotterdam p. 1- 14
Let $G = (V,E)$ be a graph. A partition $\pi = \{V_1, V_2, \ldots, V_k \}$ of the vertices $V$ of $G$ into $k$ {\it color classes} $V_i$, with $1 \leq i \leq k$, is called a {\it quorum coloring} if for every vertex $v \in V$, at least half of the vertices in the closed neighborhood $N[v]$ of $v$ have the same color as $v$. In this paper we introduce the study of quorum colorings of graphs and show that they are closely related to the concept of defensive alliances in graphs. Moreover, we determine the maximum quorum coloring of a hypercube.
Additional Metadata | |
---|---|
, , , , , , | |
Erasmus School of Economics | |
hdl.handle.net/1765/37620 | |
Econometric Institute Research Papers | |
Report / Econometric Institute, Erasmus University Rotterdam | |
Organisation | Erasmus School of Economics |
Heditniemi, S., Laskar, R. C., & Mulder, M. (2012). Quorum Colorings of Graphs (No. EI 2012-20). Report / Econometric Institute, Erasmus University Rotterdam (pp. 1–14). Retrieved from http://hdl.handle.net/1765/37620 |