Asthma is an inflammatory disease of the airway wall that leads to bronchial hyper-reactivity and airway obstruction, caused by inflammation, mucus hyper-production and airway wall remodelling. Central to pathogenesis, Th2 and Th17 lymphocytes of the adaptive immune system control many aspects of the disease by producing cytokines such as IL-4, IL-5, IL-13, and IL-17. In addition, many cells of the innate immune system such as mast cells, basophils, neutrophils, eosinophils, dendritic cells (DCs), and innate lymphoid cells (ILCs) play an important role in the initiation or maintenance of disease. Epithelial cells are ever more implicated in disease pathogenesis, as they are able to sense exposure to pathogens via pattern recognition receptors (PRRs) and can activate DCs. This review article will deal with the role of cytokines that are considered essential controllers of the inflammatory, immune and regenerative response to allergens, viruses and environmental pollutants. Emerging Th2 cytokines such as thymic stromal lymphopoietin, GM-CSF, IL-1, IL-33, IL-25 mediate the crosstalk between epithelial cells, DCs, and ILCs. Understanding the crosstalk between structural cells, innate and adaptive immune cells that is mediated by cytokines provides important mechanistic insights into how asthma develops and perpetuates itself. It could also provide the framework on which we will select new therapeutic strategies that prevent exacerbations and alter the natural course of the disease.