According to Dameshek, true polycythemia (polycythemia vera: PV) is a chronic myeloproliferative disorder of the total bone marrow without any evidence of invasiveness, in which erythrocytosis, leukocytosis, and thrombocytosis are all simultaneously present. A possible hereditary or transmitted tendency may be present, but actual familial polycythemia is rare. As to the etiology, Dameshek proposed 2 highly speculative possibilities in 1950: the presence of excessive bone marrow stimulation by an unknown factor or factors, and a lack or a diminution in the normal inhibitory factor or factors. Dameshek's hypothesis was confirmed in 2005 by Vainchenker in France by the discovery of the acquired JAK2V617F mutation as the cause of 3 phenotypes of classical myeloproliferative neoplasms: essential thrombocythemia, PV, and myelofibrosis. The JAK2V617F mutation induces a loss of inhibitory activity of the JH2 pseudokinase part on the JH1 kinase part of Janus kinase 2 (JAK2). This leads to enhanced activity of the normal JH1 kinase activity of JAK2, which makes the mutated hematopoietic stem cells hypersensitive to the hematopoietic growth factors thrombopoietin, erythropoietin, insulin-like growth factor-1, stem cell factor, and granulocyte colony-stimulating factor, resulting in trilinear myeloproliferation. In retrospect, the situation observed by Dameshek where all stops to blood production in the bone marrow are pulled in PV is caused by the JAK2V617F mutation. Dameshek considered PV patients as fundamentally normal and therefore the treatment should be as physiologic as possible. For this reason, a systematic phlebotomy/iron deficiency method of treatment was recommended; the use of radioactive phosphorus is reserved for refractory cases and cases of major thrombosis. If the patient lives long enough and does not succumb to the effects of thrombosis or other complications, the marrow will gradually show signs of diminished activity. The blood smear shows nucleated red cells, increased polychromatophilia, and immature granulocytes of various types. With increasing reduction of erythropoietic tissue, myelofibrosis becomes more of an organized mass of fibrous tissue. There is prominent extramedullary hematopoiesis in the spleen, which becomes extraordinarily large and in some cases occupies almost the entire abdominal cavity. The enlarged spleen is made up largely of metaplastic marrow tissue in primary myeloid metaplasia of the spleen.

JAK2V617F gene, bleeding tendency, blood volume, erythrocyte count, follow up, gene, gene mutation, hematocrit, human, hypoxemia, megakaryocyte, microcytosis, myelofibrosis, myeloid leukemia, myeloid metaplasia, pathophysiology, polycythemia, review, thrombocythemia, thrombosis,
Turkish Journal of Hematology
Erasmus MC: University Medical Center Rotterdam

Michiels, J.J. (2013). Physiopathology, etiologic factors, diagnosis, and course of polycythemia vera as related to therapy according to William Dameshek, 1940-1950. Turkish Journal of Hematology (Vol. 30, pp. 102–110). doi:10.4274/Tjh.2013.0029