Despite the absence of conventional lymphatics, there is efficient drainage of both cerebrospinal fluid (CSF) and interstitial fluid (ISF) from the CNS to regional lymph nodes. CSF drains from the subarachnoid space by channels that pass through the cribriform plate of the ethmoid bone to the nasal mucosa and cervical lymph nodes in animals and in humans; antigen presenting cells (APC) migrate along this pathway to lymph nodes. ISF and solutes drain from the brain parenchyma to cervical lymph nodes by a separate route along 100-150 nm wide basement membranes in the walls of cerebral capillaries and arteries. This pathway is too narrow for the migration of APC so it is unlikely that APC traffic directly from brain parenchyma to lymph nodes by this route. We present a model for the pivotal involvement of regional lymph nodes in immunological reactions of the CNS. The role of regional lymph nodes in immune reactions of the CNS in virus infections, the remote influence of the gut microbiota, multiple sclerosis and stroke are discussed. Evidence is presented for the role of cervical lymph nodes in the induction of tolerance and its influence on neuroimmunological reactions. We look to the future by examining how nanoparticle technology will enhance our understanding of CNS-lymph node connections and by reviewing the implications of lymphatic drainage of the brain for diagnosis and therapy of diseases of the CNS ranging from neuroimmunological disorders to dementias. Finally, we review the challenges and opportunities for progress in CNS-lymph node interactions and their involvement in disease processes.

, , , , , , , , , , ,
doi.org/10.1007/s11481-013-9470-8, hdl.handle.net/1765/41457
Journal of Neuroimmune Pharmacology
Erasmus MC: University Medical Center Rotterdam

Laman, J., & Weller, R. O. (2013). Drainage of cells and soluble antigen from the CNS to regional lymph nodes. Journal of Neuroimmune Pharmacology (Vol. 8, pp. 840–856). doi:10.1007/s11481-013-9470-8