This paper deals with algorithms searching trees generated by two-person, zero-sum games with perfect information. The standard algorithm in this field is alpha-beta. We will discuss this algorithm as well as extensions, like transposition tables, iterative deepening and NegaScout. Special attention is devoted to domain knowledge pertaining to game trees, more specifically to solution trees. The above mentioned algorithms implement depth first search. The alternative is best first search. The best known algorithm in this area is Stockman's SSS*. We treat a variant equivalent to SSS* called SSS-2. These algorithms are provably better than alpha-beta, but it needs a lot of tweaking to show this in practice. A variant of SSS-2, cast in alpha-beta terms, will be discussed which does realize this potential. This algorithm is however still worse than NegaScout. On the other hand, applying a similar idea as the one behind NegaScout to this last SSS version yields the best (sequential) game tree searcher known up till now: MTD(f).