Background: Drug-induced torsades de pointes (TdP) and related clinical entities represent a current regulatory and clinical burden. Objective: As part of the FP7 ARITMO (Arrhythmogenic Potential of Drugs) project, we explored the publicly available US FDA Adverse Event Reporting System (FAERS) database to detect signals of torsadogenicity for antipsychotics (APs). Methods: Four groups of events in decreasing order of drug-attributable risk were identified: (1) TdP, (2) QT-interval abnormalities, (3) ventricular fibrillation/tachycardia, and (4) sudden cardiac death. The reporting odds ratio (ROR) with 95 % confidence interval (CI) was calculated through a cumulative analysis from group 1 to 4. For groups 1+2, ROR was adjusted for age, gender, and concomitant drugs (e.g., antiarrhythmics) and stratified for AZCERT drugs, lists I and II (http://www.azcert.org, as of June 2011). A potential signal of torsadogenicity was defined if a drug met all the following criteria: (a) four or more cases in group 1+2; (b) significant ROR in group 1+2 that persists through the cumulative approach; (c) significant adjusted ROR for group 1+2 in the stratum without AZCERT drugs; (d) not included in AZCERT lists (as of June 2011). Results: Over the 7-year period, 37 APs were reported in 4,794 cases of arrhythmia: 140 (group 1), 883 (group 2), 1,651 (group 3), and 2,120 (group 4). Based on our criteria, the following potential signals of torsadogenicity were found: amisulpride (25 cases; adjusted ROR in the stratum without AZCERT drugs = 43.94, 95 % CI 22.82-84.60), cyamemazine (11; 15.48, 6.87-34.91), and olanzapine (189; 7.74, 6.45-9.30). Conclusions: This pharmacovigilance analysis on the FAERS found 3 potential signals of torsadogenicity for drugs previously unknown for this risk.

doi.org/10.1007/s40264-013-0032-z, hdl.handle.net/1765/55463
Drug Safety
Erasmus MC: University Medical Center Rotterdam

Poluzzi, E., Raschi, E., Koci, A., Moretti, U., Spina, E., Behr, E., … de Ponti, F. (2013). Antipsychotics and torsadogenic risk. Drug Safety, 36(6), 467–479. doi:10.1007/s40264-013-0032-z