Ataxia-telangiectasia (A-T) is a progressive autosomal recessive disease featuring neurodegeneration, immunodeficiency, chromosomal instability, radiation sensitivity and a highly increased proneness to cancer. A-T is ethnically widespread and genetically heterogeneous, as indicated by the existence of four complementation groups in this disease. Several "A-T-like" genetic diseases share various clinical and cellular characteristics with A-T. By using linkage analysis to study North American and Turkish A-O families, the ATA (A-T, complementation group A) gene has been mapped to chromosome 11q23. A number of Israeli Arab A-T patients coming from large, highly inbred families were assigned to group A In one of these families, an additional autosomal recessive disease was identified, characterized by ataxia, hypotonia, microcephaly and bilateral congenital cataracts. In two patients with this syndrome, normal levels of serum immunoglobulins and alpha-fetoprotein, chromosomal stability in peripheral blood lymphocytes and skin fibroblasts, and normal cellular response to treatments with X-rays and the radiomimetic drug neocarzinostatin indicated that this disease does not share, with A-T, any additional features other than ataxia. These tests also showed that another patient in this family, who is also mentally retarded, is affected with both disorders. This conclusion was further supported by linkage analysis with 11q23 markers. Lod scores between A-O and these markers, cumulated over three large Arab families, were significant and confirmed the localization of the ATA gene to aq23. However, another Druze family unassigned to a specific complementation group, showed several recombinants between A-T and the same markers, leaving the localization of the A-T gene in this family open.,
Human Genetics
Department of Molecular Genetics

Ziv, Y., Frydman, M., Lange, E., Zelnik, N., Rotman, G., Julier, C., … Shiloh, Y. (1992). Ataxia-telangiectasia: Linkage analysis in highly inbred Arab and Druze families and differentiation from an ataxia-microcephaly-cataract syndrome. Human Genetics, 88(6), 619–626. doi:10.1007/BF02265285