Although Virtual Histology intravascular ultrasound (VH-IVUS) is increasingly used in clinical research, the reproducibility of plaque composition remains unexplored in significant coronary artery and stented lesions. The purpose of this study was to assess the reproducibility of necrotic core and calcium content in atherosclerotic coronary lesions that were treated with a bioresorbable everolimus-eluting vascular scaffold (BVS) using a new measurement method (Shin's method) by VH-IVUS. Eight patients treated with a BVS (Abbott Vascular, Santa Clara, CA, USA) were analyzed with serial VH-IVUS assessments, i.e., pre- and post-stenting, and at 6 months and 2 years follow-up. A total of 32 coronary segments were imaged to evaluate the reproducibility of volumetric VH-IVUS measurements. In Shin's method, contours are drawn around the IVUS catheter (instead of the lumen) and vessel. Overall, in the imaged coronary segment, for necrotic core and dense calcium volumes, the relative intra-observer differences were 0.30 ± 0.22, 0.19 ± 0.16% for observer 1 and 0.45 ± 0.41, 0.36 ± 0.47% for observer 2, respectively. The interobserver relative differences of necrotic core and dense calcium volumes were 0.51 ± 0.79 and 0.56 ± 1.01%, respectively. The present study demonstrates a good reproducibility for both, intra-observer and interobserver measurements using Shin's method. This method is suitable for the measurement of necrotic core and dense calcium using VH-IVUS in longitudinal studies, especially studies on bioresorbable scaffolds, because the degradation process will be fully captured independently of the location of the struts and their greyscale appearance.

, ,
doi.org/10.1007/s10554-010-9779-9, hdl.handle.net/1765/66098
International Journal of Cardiovascular Imaging
Department of Cardiology

Shin, E.S, Garcia-Garcia, H.M, Sarno, G, Thuesen, L, Dudek, D, Ormiston, J.A, & Serruys, P.W.J.C. (2012). Reproducibility of Shin's method for necrotic core and calcium content in atherosclerotic coronary lesions treated with bioresorbable everolimus-eluting vascular scaffolds using volumetric intravascular ultrasound radiofrequency-based analysis. International Journal of Cardiovascular Imaging, 28(1), 43–49. doi:10.1007/s10554-010-9779-9