Brief coronary artery occlusion can protect the heart against damage during subsequent prolonged coronary artery occlusion; ischemic preconditioning. The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning is investigated in isolated perfused rat hearts, by measuring CGRP release during ischemic preconditioning and mimicking this by exogenous CGRP infusion, either in the absence or presence of the CGRP antagonist BIBN4096BS. CGRP increased left ventricular pressure and coronary flow in a concentration dependent manner, which was effectively antagonized by BIBN4096BS. Rat hearts (n = 36) were subjected to 45 min coronary artery occlusion and 180 min reperfusion, which was preceded by: (1) sham pretreatment, (2) BIBN4096BS infusion (1 μM), (3) preconditioning by 15 min coronary artery occlusion and10 min reperfusion, (4) as 3, but with BIBN4096BS, (5) 15 min CGRP infusion (5 nM) and 10 min washout, (6) as 5, but with BIBN4096BS. Cardiac protection was assessed by reactive hyperaemia, creatine kinase release, infarct size related to the area at risk (%), and left ventricular pressure recovery. Preconditioning increased CGRP release into the coronary effluent from 88 ± 13 to 154 ± 32 pg/min/g, and significantly protected the hearts by decreasing reactive hyperaemia (35%), reducing creatine kinase release (53%), limiting infarct size (48%), and improving left ventricular pressure recovery (36%). Exogenous CGRP induced preconditioning-like cardioprotection. BIBN completely abolished the cardioprotection induced by preconditioning as well as by exogenous CGRP. In conclusion, since cardioprotection of preconditioning-induced CGRP release can be mimicked by exogenous CGRP, and both can be blocked by a CGRP antagonist, results indicate an important role for CGRP in ischemic preconditioning.

, , , , ,,
European Journal of Pharmacology
Department of Pharmacology

Chai, W., Mehrotra, S., Danser, J., & Schoemaker, R. (2006). The role of calcitonin gene-related peptide (CGRP) in ischemic preconditioning in isolated rat hearts. European Journal of Pharmacology, 531(1-3), 246–253. doi:10.1016/j.ejphar.2005.12.039