The Fragile X syndrome (FraX), which is characterized among other physical and neurologic impairments by mental retardation, is caused by the absence of the product of the FMR1 gene. The Fragile X Mental Retardation Protein (FMRP) is a member of a novel family of RNA-binding proteins. The latter includes two other proteins highly homologous with FMRP: the fragile X related proteins I and 2 (FXRP1 and FXRP2). Characterization of FXRPs, including their interaction with FMRP, will provide critical information about the mechanisms of action of FMRP and the role of this group of proteins in FMRP-deficient conditions such as FraX. Genetic manipulations of FMRP and the FXRPs should also provide valuable tools for investigating pathophysiology and gene therapies in FraX. The present review summarizes the strategies used for identifying the FXRPs, their chromosomal localization, molecular structure, and tissue distribution. It also reviews interactions between different members of this family of RNA-binding proteins. Animal models, both knockout and transgenic, of FMRP and the FXRPs are discussed. Phenotypic features of the FMR1 knockout mouse, the FMR1 transgenic rescue mouse, and other novel strategies for manipulating and delivering FMRP and FXRPs to the brain and other tissues are described.

Additional Metadata
Keywords Fragile X, FXRP, Knockout mouse
Persistent URL dx.doi.org/10.1002/jemt.10064, hdl.handle.net/1765/68339
Journal Microscopy Research and Technique
Citation
Hoogeveen, A.T, Willemsen, R, & Oostra, B.A. (2002). Fragile X syndrome, the fragile X related proteins, and animal models. Microscopy Research and Technique (Vol. 57, pp. 148–155). doi:10.1002/jemt.10064