Cytochrome P4502C9 (CYP2C9) is the main enzyme implicated in coumarin anticoagulant metabolism. The variant alleles CYP2C9*2 and CYP2C9*3 are associated with an increased response to warfarin. However, an effect on acenocoumarol dose requirements appears to be absent for the CYP2C9*2 allele and the consequences for the metabolism of phenprocoumon have not yet been established. We investigated CYP2C9 polymorphisms in relation to the international normalized ratio (INR) during the first 6 weeks of treatment and its effect on the maintenance dose in a cohort of 1124 patients from the Rotterdam Study who were treated with acenocoumarol or phenprocoumon. There was a statistically significant difference in first INR between patients with variant genotypes and those with the wild-type. Almost all acenocoumarol- treated patients with a variant genotype had a significantly higher mean INR and had a higher risk of an INR ≥ 6.0 during the first 6 weeks of treatment. A clear genotype-dose relationship was found for acenocoumarol-treated patients. For patients on phenprocoumon, no significant differences were found between variant genotypes and the wild-type genotype. Individuals with one or more CYP2C9*2 or CYP2C9*3 allele(s) require a significantly lower dose of acenocoumarol compared to wild-type patients. Phenprocoumon appears to be a clinically useful alternative in patients carrying the CYP2C9*2 and *3 alleles.

, , , , ,
doi.org/10.1097/00008571-200401000-00003, hdl.handle.net/1765/68548
Pharmacogenetics
Department of Clinical Chemistry

Visser, L., van Schaik, R., Kasbergen, A. A. H., de Smet, P., Vulto, A., Hofman, A., … Stricker, B. (2004). The risk of overanticoagulation in patients with cytochrome P450 CYP2C9*2 or CYP2C9*3 alleles on acenocoumarol or phenprocoumon. Pharmacogenetics, 14(1), 27–33. doi:10.1097/00008571-200401000-00003