Various translocations and mutations have been identified in myeloma, and certain aberrations, such as t(4;14) and del17, are linked with disease prognosis. To investigate mutational prevalence in myeloma and associations between mutations and patient outcomes, we tested a panel of 41 known oncogenes and tumor suppressor genes in tumor samples from 133 relapsed myeloma patients participating in phase 2 or 3 clinical trials of bortezomib. DNA mutations were identified in 14 genes. BRAF as well as RAS genes were mutated in a large proportion of cases (45.9%) and these mutations were mutually exclusive. New recurrent mutations were also identified, including in the PDGFRA and JAK3 genes. NRAS mutations were associated with a significantly lower response rate to single-agent bortezomib (7% vs 53% in patients with mutant vs wildtype NRAS, P 5 .00116, Bonferroni-corrected P 5 .016), as well as shorter time to progression in bortezomib-treated patients (P 5 .0058, Bonferroni-corrected P 5 .012). However, NRAS mutation did not impact outcome in patients treated with high-dose dexamethasone. KRAS mutation did not reduce sensitivity to bortezomib or dexamethasone. These findings identify a significant clinical impact of NRAS mutation in myeloma and demonstrate a clear example of functional differences between the KRAS and NRAS oncogenes. (Blood. 2014; 123(5):632-639).,
Department of Hematology

Mulligan, G., Lichter, D., Bacco, A. D., Blakemore, S., Berger, A., Koenig, E., … Schu, M. (2014). Mutation of NRAS but not KRAS significantly reduces myeloma sensitivity to single-agent bortezomib therapy. In Blood (Vol. 123, pp. 632–639). doi:10.1182/blood-2013-05-504340