2014-08-14
Asymmetric time aggregation and its potential benefits for forecasting annual data
Publication
Publication
Empirical Economics: a quarterly journal of the Institute for Advanced Studies, Vienna , Volume 49 p. 363- 387
For many economic time-series variables that are observed regularly and frequently, for example weekly, the underlying activity is not distributed uniformly across the year. For the aim of predicting annual data, one may consider temporal aggregation into larger subannual units based on an activity timescale instead of cal- endar time. Such a scheme may strike a balance between annual modeling (which processes little information) and modeling at the finest available frequency (which may lead to an excessive parameter dimension), and it may also outperform model- ing calendar time units (with some months or quarters containing more information than others). We suggest an algorithm that performs an approximate inversion of the inherent seasonal time deformation. We illustrate the procedure using two exemplary weekly time series.
Additional Metadata | |
---|---|
, , , | |
doi.org/10.1007/s00181-014-0864-0, hdl.handle.net/1765/78816 | |
Econometric Institute Reprint Series , ERIM Top-Core Articles | |
Empirical Economics: a quarterly journal of the Institute for Advanced Studies, Vienna | |
Organisation | Erasmus School of Economics |
Kunst, R., & Franses, P. H. (2014). Asymmetric time aggregation and its potential benefits for forecasting annual data. Empirical Economics: a quarterly journal of the Institute for Advanced Studies, Vienna, 49, 363–387. doi:10.1007/s00181-014-0864-0 |