Energy storage devices (ESDs) have the potential to revolutionize the electricity grid by allowing the smoothing of variable-energy generator output and the time-shifting of demand away from peak times. A common approach to study the impact of ESDs on energy systems is by modeling them as electric circuits in simulations. Although recent circuit models are becoming more accurate, to obtain statistically valid results, extensive simulations need to be run. In some cases, existing datasets are not large enough to obtain statistically significant results. The impact of ESDs on energy systems has also been recently studied using analytical methods, but usually by assuming ideal ESD behavior, such as infinite ESD charging and discharging rates, and zero self-discharge. However, real-life ESDs are far from ideal. We investigate the effect of nonideal ESD behavior on system performance, presenting an analytical ESD model that retains much of the simplicity of an ideal ESD, yet captures many (though not all) nonideal behaviors for a class of ESDs that includes all battery technologies and compressed air energy storage systems. This allows us to compute performance bounds for systems with nonideal ESDs using standard teletraffic techniques. We provide performance results for five widely used ESD technologies and show that our models can closely approximate numerically computed performance bounds.

hdl.handle.net/1765/79417
ERIM Top-Core Articles
Rotterdam School of Management (RSM), Erasmus University

Ghiassi-Farrokhfal, Y., Keshav, S., & Rosenberg, C. (2015). Towards a Realistic Storage Modelling and Performance Analysis in Smart Grids. In ERIM Top-Core Articles. Retrieved from http://hdl.handle.net/1765/79417