Mucus clearance is a primary innate defense mechanism in the human airways. Cystic fibrosis (CF) is a genetic disease caused by mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CF is characterized by dehydration of airway surface liquid and impaired mucociliary clearance. As a result, microorganisms are not efficiently removed from the airways, and patients experience chronic pulmonary infections and inflammation. We propose a new physiologically based mathematical model of muco-ciliary transport consisting of the two major components of the mucociliary clearance system: (i) periciliary liquid layer (PCL) and (ii) mucus layer. We study mucus clearance under normal conditions and in CF patients. Restoring impaired clearance of airway secretions in one of the major goals of therapy in patients with CF. We consider the action of the aerosolized and inhaled medication dornase alfa, which reduces the viscosity of cystic fibrosis mucus, by selectively cleaving the long DNA strands it contains. The results of the model simulations stress the potential relevance of the location of the drug deposition in the central or peripheral airways. Mucus clearance was increased in case the drug was primarily deposited peripherally, i.e. in the small airways.

, , , ,,
Journal of Theoretical Biology
Erasmus MC: University Medical Center Rotterdam

Kurbatova, P., Bessonov, N., Volpert, V., Tiddens, H., Cornu, C., Nony, P., & Caudri, D. (2015). Model of mucociliary clearance in cystic fibrosis lungs. Journal of Theoretical Biology, 372, 81–88. doi:10.1016/j.jtbi.2015.02.023