Objective: The objective is evaluation of a traditionally designed operating room using simulation of various surgical workflows. Background: A literature search showed that there is no evidence for an optimal operating room layout regarding the position and size of an ultraclean ventilation (UCV) canopy with a separate preparation room for laying out instruments and in which patients are induced in the operating room itself. Neither was literature found reporting on process simulation being used for this application. Many technical guidelines and designs have mainly evolved over time, and there is no evidence on whether the proposed measures are also effective for the optimization of the layout for workflows. Methods: The study was conducted by applying observational techniques to simulated typical surgical procedures. Process simulations which included complete surgical teams and equipment required for the intervention were carried out for four typical interventions. Four observers used a form to record conflicts with the clean area boundaries and the height of the supply bridge. Preferences for particular layouts were discussed with the surgical team after each simulated procedure. Results: We established that a clean area measuring 3 x 3 m and a supply bridge height of 2.05 m was satisfactory for most situations, provided a movable operation table is used. The only cases in which conflicts with the supply bridge were observed were during the use of a surgical robot (Da Vinci) and a surgical microscope. During multiple trauma interventions, bottlenecks regarding the dimensions of the clean area will probably arise. Conclusions: The process simulation of four typical interventions has led to significantly different operating room layouts than were arrived at through the traditional design process.

, , , , , ,
hdl.handle.net/1765/84234
Health Environments Research and Design Journal
Department of Pediatrics

Traversari, R., Goedhart, R., & Schraagen, J. M. (2013). Process simulation during the design process makes the difference: Process simulations applied to a traditional design. Health Environments Research and Design Journal, 6(2), 58–76. Retrieved from http://hdl.handle.net/1765/84234