A fully automatic method for measuring diagnostic angles of hip dysplasia is presented. The method consists of the automatic segmentation of CT images and detection of anatomical landmarks on the femur and acetabulum. The standard angles used in the diagnosis of hip dysplasia are subsequently automatically calculated. Previous work in automating the measuring of angles required the manual segmentation or delineation of the articular joint surface. In the current work automatic segmentation is established using graph-cuts with a cost function based on a sheetness score to detect the sheet-like structure of the bone. Anatomical landmarks are subsequently detected using heuristics based on ray-tracing and the distance to the approximated acetabulur joint surface. Standard diagnositic angles are finally calculated and presented for interpretation. Experiments using 26 patients, showed a good agreement with gold standard manual measurements by an expert radiologist as performed in daily practice. The mean difference for the five angles was between-1:1 and 2:0 degrees with a concordance correlation coefficient between 0:87 and 0:93. The standard deviation varied between 2:3 and 4:1 degrees. These values correspond to values found in evaluating interobserver and intraobserver variation for manual measurements. The method can be used in clinical practice to replace the current manual measurements performed by radiologists. In the future, the method will be integrated into an intraoperative surgical guidance system.

, , , , , , ,
doi.org/10.1117/12.2007599, hdl.handle.net/1765/85052
Erasmus MC: University Medical Center Rotterdam

De Raedt, S., Mechlenburg, I., Stilling, M., Rømer, L., Søballe, K., & de Bruijne, M. (2013). Automated measurement of diagnostic angles for hip dysplasia. doi:10.1117/12.2007599