The uptake of [125I]triiodothyroacetic acid ([125I]Triac) in anterior pituitary cells was investigated and compared with that of [125I]T3. Furthermore, the effects of Triac, T3, and T4 on TSH release were compared. Cells isolated from adult male Wistar rats were cultured for 3 days in medium with 10% fetal calf serum. Uptake was measured at 37 C with [125I]Triac (100,000 cpm; 120 pM) or [125I]T3 (50,000 cpm; 50 pM) in medium with 0.5% BSA. In this medium, the ratio of the free fractions of Triac, T3, and T4 was 1:8:1. Exposure of cells to 100 nM TRH for 2 h stimulated TSH release by 80-110% (P < 0.001). Comparing total hormone levels (1 nM to 1 microM), Triac and T3 were equally effective in reducing this response, and both were 10-fold more effective than T4. The time course (15 min to 4 h) of [125I]Triac uptake was similar to that of [125I]T3, showing equilibrium after 1 h. Unlabeled Triac (1 microM) reduced the uptake of [125I]Triac and [125I]T3 at all time intervals. Expressed per pM free hormone, the cellular and nuclear uptake of [125I]Triac were twice those of [125I]T3. The 15-min uptake of [125I]Triac was reduced by incubation with 10 nM unlabeled Triac (35%; P < 0.001). Maximum inhibition (56%; P < 0.001) was found with 10 microM Triac. A similar effect was seen with 10 microM T3, T4, or 3,3',5,5'-tetraiodothyroacetic acid. Preincubation (30 min) and incubation (15 min) with 10 microM oligomycin reduced the cellular ATP content by 51% (P < 0.001), [125I]T3 uptake by 77% (P < 0.001), and [125I]Triac uptake by only 25% (P < 0.001). The temperature dependence of [125I]Triac and [125I]T3 uptake was the same. Preincubation and incubation with 10 microM monensin (reduces the Na+ gradient) or 10 microM monodansylcadaverine (inhibits receptor-mediated endocytosis) reduced 15-min [125I] Triac uptake by 15% (P < 0.005) and 19% (P < 0.005), respectively. The data show that 1) Triac, on the basis of the free hormone concentration, is more potent than T3 or T4 in suppressing TSH secretion; and 2) the rapid uptake of [125I]Triac by the anterior pituitary occurs by a carrier-mediated mechanism that is only partially dependent on ATP or the Na+ gradient.

Animals, Cell Membrane/metabolism, Cell Nucleus/metabolism, Cells, Cultured, Male, Pituitary Gland, Anterior/cytology/drug effects/*secretion, Rats, Rats, Wistar, Thyrotropin-Releasing Hormone/pharmacology, Thyrotropin/metabolism/*secretion, Time Factors, Triiodothyronine/*analogs & derivatives/metabolism/pharmacokinetics/pharmacology
Erasmus MC: University Medical Center Rotterdam

Everts, M.E, Visser, T.J, Moerings, E.P.C.M, Docter, R, van Toor, H, Tempelaars, A.M, … de Jong, M. (1994). Uptake of triiodothyroacetic acid and its effect on thyrotropin secretion in cultured anterior pituitary cells. Endocrinology. Retrieved from