Non-communicative hand gestures have been found to benefit problem-solving performance. These gestures seem to compensate for limited internal cognitive capacities, such as visual working memory capacity. Yet, it is not clear how gestures might perform this cognitive function. One hypothesis is that gesturing is a means to spatially index mental simulations, thereby reducing the need for visually projecting the mental simulation onto the visual presentation of the task. If that hypothesis is correct, less eye movements should be made when participants gesture during problem solving than when they do not gesture. We therefore used mobile eye tracking to investigate the effect of co-thought gesturing and visual working memory capacity on eye movements during mental solving of the Tower of Hanoi problem. Results revealed that gesturing indeed reduced the number of eye movements (lower saccade counts), especially for participants with a relatively lower visual working memory capacity. Subsequent problem-solving performance was not affected by having (not) gestured during the mental solving phase. The current findings suggest that our understanding of gestures in problem solving could be improved by taking into account eye movements during gesturing.

, , , ,,
Cognitive Processing: international quarterly of cognitive science
Department of Psychology

Pouw, W., Mavilidi, M.-F., van Gog, T., & Paas, F. (2016). Gesturing during mental problem solving reduces eye movements, especially for individuals with lower visual working memory capacity. Cognitive Processing: international quarterly of cognitive science, 17(3), 269–277. doi:10.1007/s10339-016-0757-6