The main objective of this article is to assess the priorities of local governments (LGs) in Europe regarding climate change mitigation technologies evaluation in the electricity sector and to provide important insights for energy policy design. The study applies a hybrid weighting methodology to elicit LGs' preferences in a constructive and iterative way regarding the evaluation criteria of low-carbon energy technologies. Furthermore, the study employs three data collection and preference elicitation methods, namely: survey, workshop, and webinar. The study was conducted across thirty one (31) European LGs that were categorized according to three variables: population size, geographical region and gross domestic product (GDP) per capita. The analysis shows that "CO2 emissions" is the most important criterion among European LGs, followed by "mortality and morbidity" and "ecosystem damages". The results illustrate the potential synergies of climate and energy policies for addressing both CO2 emissions and air pollution. It was also found, based on a correlation analysis, that LGs with higher GDP per capita tend to provide higher weights to criteria related to security of energy supply and technological innovation. The current study provides insights on the actual LGs' priorities that are important to consider during low-carbon energy technologies evaluation and energy policy design. Interestingly, the results of the European LGs' preferences clearly show that the EU climate policy objectives have reached different levels of governance-and at this particular case, the local level. Furthermore, the developed methodology could be applied at different geographical regions to map other regions' LG priorities, but also at a group decision making context to elicit relevant stakeholders' preferences regarding low-carbon energy technologies and policy objectives.

, , ,,
Erasmus University Rotterdam

Grafakos, S, Enseñado, E.M, Flamos, A, & Rotmans, J. (2015). Mapping and measuring European local governments' priorities for a sustainable and low-carbon energy future. Energies, 8(10), 11641–11666. doi:10.3390/en81011641