The human BON-1 and QGP-1 cell lines are two frequently used models in pancreatic neuroendocrine tumor (PNET) research. Data on the whole-exome genetic constitution of these cell lines is largely lacking. This study presents, to our knowledge, the first wholeexome profile of the BON-1 and QGP-1 cell lines. Cell line identity was confirmed by short tandem repeat profiling. Using GTG-banding and a CytoSNP-12v2 Beadchip array, cell line ploidy and chromosomal alterations were determined in BON-1 and QGP-1. The exomes of both cell lines were sequenced on Ilumina’s HiSeq next-generation sequencing (NGS) platform. Single-nucleotide variants (SNVs) and insertions and deletions (indels) were detected using the Genome Analysis ToolKit. SNVs were validated by Sanger sequencing. Ploidy of BON-1 and QGP-1 was 3 and 4 respectively, with long stretches of loss of heterozygosity across multiple chromosomes, which is associated with aggressive tumor behavior. In BON-1, 57 frameshift indels and 1725 possible protein-altering SNVs were identified in the NGS data. In the QGP-1 cell line, 56 frameshift indels and 1095 SNVs were identified. ATRX, a PNET-associated gene, was mutated in both cell lines, while mutation of TSC2 was detected in BON-1. A mutation in NRAS was detected in BON-1, while KRAS was mutated in QGP-1, implicating aberrations in the RAS pathway in both cell lines. Homozygous mutations in TP53 with possible loss of function were identified in both cell lines. Various MUC genes, implicated in cell signaling, lubrication and chemical barriers, which are frequently expressed in PNET tissue samples, showed homozygous proteinaltering SNVs in the BON-1 and QGP-1 cell lines.

, , , ,,
Journal of Molecular Endocrinology
Department of Internal Medicine

Vandamme, T.A.L, Peeters, M.C, Dogan, F, Pauwels, P, Van Assche, E, Beyens, M, … de Beeck, K.O. (2015). Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1. Journal of Molecular Endocrinology, 54(2), 137–147. doi:10.1530/JME-14-0304