Human α2-antiplasmin (α2AP, also called α2-plasmin inhibitor) is the main physiological inhibitor of the fibrinolytic enzyme plasmin. α2AP inhibits plasmin on the fibrin clot or in the circulation by forming plasmin-antiplasmin complexes. Severely reduced α2AP levels in hereditary α2AP deficiency may lead to bleeding symptoms, whereas increased α2AP levels have been associated with increased thrombotic risk. α2AP is a very heterogeneous protein. In the circulation, α2AP undergoes both amino terminal (N-terminal) and carboxyl terminal (C-terminal) proteolytic modifications that significantly modify its activities. About 70% of α2AP is cleaved at the N terminus by antiplasmin-cleaving enzyme (or soluble fibroblast activation protein), resulting in a 12-amino-acid residue shorter form. The glutamine residue that serves as a substrate for activated factor XIII becomes more efficient after removal of the N terminus, leading to faster crosslinking of α2AP to fibrin and consequently prolonged clot lysis. In approximately 35% of circulating α2AP, the C terminus is absent. This C terminus contains the binding site for plasmin(ogen), the key component necessary for the rapid and efficient inhibitory mechanism of α2AP. Without its C terminus, α2AP can no longer bind to the lysine binding sites of plasmin(ogen) and is only a kinetically slow plasmin inhibitor. Thus, proteolytic modifications of the N and C termini of α2AP constitute major regulatory mechanisms for the inhibitory function of the protein and may therefore have clinical consequences. This review presents recent findings regarding the main aspects of the natural heterogeneity of α2AP with particular focus on the functional and possible clinical implications.,
Department of Hematology

Abdul, S., Leebeek, F., Rijken, D., & de Willige, S. U. (2016). Natural heterogeneity of α2-antiplasmin: Functional and clinical consequences. Blood (Vol. 127, pp. 538–545). doi:10.1182/blood-2015-09-670117