Background Multiple-drug therapy for tuberculosis (TB) and TB-associated co-morbidity increase the likelihood of drug-drug interactions (DDIs). Inhibition of membrane transporters is an important mechanism underlying DDIs. In this study, we assessed the in vitro inhibitory potential of currently used first and second-line TB drugs and of proposed mycobacterial efflux pump inhibitors (EPIs) on the major ABC transporters relevant to drug transport, namely P-gp, BCRP, BSEP and MRP1-5.
Methods Membrane vesicles isolated from transporter-overexpressing HEK293 cells were used to study the inhibitory action of TB drugs and EPIs on the transport of model substrates [3H]-NMQ (P-gp); [3H]-E1S (BCRP); [3H]-TCA (BSEP); [3H]-E217βG (MRP1, 3 and 4) and [3H]-MTX (MRP2 and 5).
Results A strong inhibition (IC50 value <15 μM) was observed for clofazimine (P-gp, BCRP and MRP1), thioridazine (BCRP), timcodar (P-gp, BSEP and MRP1) and SQ109 (P-gp and BCRP). Rifampicin inhibited all transporters, but less potently.
Conclusions Co-administration of clofazimine, thioridazine, timcodar, SQ109 and possibly rifampicin with drugs that are substrates for the inhibited transporters may lead to DDIs. The mycobacterial EPIs potently inhibited a wider range of human ABC transporters than previously reported. These vesicular transport data are especially valuable considering the current emphasis on development of TB drug regimens.

ABC transporters, Drug-drug interactions, Membrane vesicles, Protein overexpression, Tuberculosis, Vesicular transport assay,
Department of Medical Microbiology and Infectious Diseases

Te Brake, L.H.M, Russel, F.G.M, van den Heuvel, J.J.M, de Knegt, G.J, de Steenwinkel, J.E.M, Burger, D.M, … Koenderink, J.B. (2015). Inhibitory potential of tuberculosis drugs on ATP-binding cassette drug transporters. Tuberculosis, 96, 150–157. doi:10.1016/