2015-07-23
Enhanced Specificity and Drug Delivery in Tumors by cRGD - Anchoring Thermosensitive Liposomes
Publication
Publication
Pharmaceutical Research , Volume 32 - Issue 12 p. 3862- 3876
Purpose: To develop RGD-targeted thermosensitive liposomes with increased tumor retention, improving drug release efficiency upon mild hyperthermia (HT) in both tumor and angiogenic endothelial cells. Methods: Standard termosensitive liposomes (TSL) and TSL containing a cyclic Arg-Gly-Asp (cRGD) pentapeptide with the sequence Arg-Cys-D-Phe-Asp-Gly (RGDf[N-Met]C) were synthetized, loaded with Dox and characterized. Temperature- and time-dependent drug release profiles were assessed by fluorometry. Intracellular Dox delivery was studied by flow cytometry and confocal microscopy. Cytotoxic effect of TSL and RGD-TSL was studied on B16Bl6 melanoma, B16F10 melanoma and HUVEC. Intravital microscopy was performed on B16Bl6 tumors implanted in dorsal-skin fold window-bearing mice. Pharmacokinetic and biodistribution of Dox-TSL and Dox-RGD-TSL were followed in B16Bl6 tumor bearing mice upon normothermia or initial hyperthermia conditions. Results: DLS and cryo-TEM revealed particle homogeneity and size of around 85 nm. Doxorubicin loading efficiency was >95%as assessed by spectrofluorometry. Flow cytometry and confocal microscopy showed a specific uptake of RGD-TSL by melanoma and endothelial cells when compared to TSL and an increased doxorubicin delivery. High resolution intravital microscopy demonstrated specific accumulation of RGD-TSL to the tumor vasculature. Moreover, application of hyperthermia resulted in massive drug release from RGD-TSL. Biodistribution studies showed that initial hyperthermia increases Dox uptake in tumors from TSL and RGD-TSL. Conclusion: RGD-TSL have potency to increase drug efficacy due to higher uptake by tumor and angiogenic endothelial cells in combination with heat-triggered drug release.
Additional Metadata | |
---|---|
, , , | |
doi.org/10.1007/s11095-015-1746-7, hdl.handle.net/1765/91180 | |
Pharmaceutical Research | |
Organisation | Erasmus MC: University Medical Center Rotterdam |
Dicheva, B.M, ten Hagen, T.L.M, Seynhaeve, A.L.B, Amin, M, Eggermont, A.M.M, & Koning, G.A. (2015). Enhanced Specificity and Drug Delivery in Tumors by cRGD - Anchoring Thermosensitive Liposomes. Pharmaceutical Research, 32(12), 3862–3876. doi:10.1007/s11095-015-1746-7
|