Coronary microvascular dysfunction (CMD) has been proposed as an important component of diabetes mellitus (DM)-and hypercholesterolemia-associated coronary artery disease (CAD). Previously we observed that 2.5 mo of DM and high-fat diet (HFD) in swine blunted brady-kinin (BK)-induced vasodilation and attenuated endothelin (ET)-1-mediated vasoconstriction. Here we studied the progression of CMD after 15 mo in the same animal model of CAD. Ten male swine were fed a HFD in the absence (HFD, n = 5) or presence of streptozotocin-induced DM (DM + HFD. n = 5). Responses of small (~300-μm-diameter) coronary arteries to BK. ET-1. and the nitric oxide (NO) donor 5-nitroso-N-acetylpenicillamine were examined in vitro and compared with those of healthy (Normal) swine (n = 12). Blood glucose was elevated in DM + HFD (17.6 ± 4.5 mmol/1) compared with HFD (5.1 ± 0.4 mmol/1) and Normal (5.8 ± 0.6 mmol/1) swine, while cholesterol was markedly elevated in DM + HFD (16.8 ± 1.7 mmol/1) and HFD (18.1 ±2.6 mmol/1) compared with Normal (2.1 ± 0.2 mmol/1) swine (all P < 0.05). Small coronary arteries showed early atherosclerotic plaques in HFD and DM + HFD swine. Surprisingly. DM + HFD and HFD swine maintained BK responsiveness compared with Normal swine due to an increase in NO availability relative to endothelium-derived hyperpolarizing factors. However, ET-1 responsiveness was greater in HFD and DM + HFD than Normal swine (both P < 0.05), resulting mainly from ΕΤ» receptor-mediated vasoconstriction. Moreover, the calculated vascular stiffness coefficient was higher in DM + HFD and HFD than Normal swine (both P < 0.05). In conclusion. 15 mo of DM + HFD, as well as HFD alone, resulted in CMD. Although the overall vasodilation to BK was unperturbed, the relative contributions of NO and endothelium-de-rived hyperpolarizing factor pathways were altered. Moreover, the vasoconstrictor response to ET-1 was enhanced, involving the ΕΤB receptors. In conjunction with our previous study, these findings highlight the time dependence of the phenotype of CMD.

, , , ,
doi.org/10.1152/ajpheart.00458.2015, hdl.handle.net/1765/97248
American Journal of Physiology - Heart and Circulatory Physiology
Department of Cardiology

Sorop, O., van den Heuvel, M., van Ditzhuijzen, N., de Beer, V. J., Heinonen, I., van Duin, R., … Duncker, D. (2016). Coronary microvascular dysfunction after long-term diabetes and hypercholesterolemia. American Journal of Physiology - Heart and Circulatory Physiology, 311(6), H1339–H1351. doi:10.1152/ajpheart.00458.2015